首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1950篇
  免费   496篇
  国内免费   173篇
测绘学   32篇
大气科学   119篇
地球物理   1108篇
地质学   709篇
海洋学   160篇
天文学   2篇
综合类   54篇
自然地理   435篇
  2023年   11篇
  2022年   37篇
  2021年   92篇
  2020年   93篇
  2019年   72篇
  2018年   85篇
  2017年   118篇
  2016年   106篇
  2015年   100篇
  2014年   133篇
  2013年   236篇
  2012年   115篇
  2011年   132篇
  2010年   111篇
  2009年   110篇
  2008年   128篇
  2007年   145篇
  2006年   130篇
  2005年   95篇
  2004年   87篇
  2003年   78篇
  2002年   84篇
  2001年   75篇
  2000年   33篇
  1999年   30篇
  1998年   21篇
  1997年   27篇
  1996年   14篇
  1995年   23篇
  1994年   19篇
  1993年   16篇
  1992年   9篇
  1991年   8篇
  1990年   11篇
  1989年   7篇
  1988年   11篇
  1987年   5篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1972年   1篇
排序方式: 共有2619条查询结果,搜索用时 109 毫秒
71.
The confounding effects of step change invalidate the stationarity assumption of commonly used trend analysis methods such as the Mann–Kendall test technique, so previous studies have failed to explain inconsistencies between detected trends and observed large precipitation anomalies. The objectives of this study were to (1) formulate a trend analysis approach that considers nonstationarity due to step changes, (2) use this approach to detect trends and extreme occurrences of precipitation in a mid‐latitude Eurasian steppe watershed in North China, and (3) examine how runoff responds to precipitation trends in the study watershed. Our results indicate that annual precipitation underwent a marginal step jump around 1995. The significant annual downward trend after 1994 was primarily due to a decrease in summer rainfall; other seasons exhibited no significant precipitation trends. At a monthly scale, July rainfall after 1994 exhibited a significant downward trend, whereas precipitation in other months had no trend. The percentage of wet days also underwent a step jump around 1994 following a significant decreasing trend, although the precipitation intensity exhibited neither a step change nor any significant trend. However, both low‐frequency and high‐frequency precipitation events in the study watershed occurred more often after than before 1994; probably as either a result or an indicator of climate change. In response to these precipitation changes, the study watershed had distinctly different precipitation‐runoff relationships for observed annual precipitations of less than 300 mm, between 300 and 400 mm, and greater than 400 mm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
72.
A guiding principle in hydrological modelling should be to keep the number of calibration parameters to a minimum. A reduced number of parameters to be calibrated, while maintaining the accuracy and detail required by modern hydrological models, will reduce parameter and model structure uncertainty and improve model diagnostics. In this study, the dynamics of runoff are derived from the distribution of distances from points in the catchments to the nearest stream. This distribution is unique for each catchment and can be determined from a geographical information system. The distribution of distances, will, when a celerity of (subsurface) flow is introduced, provide a distribution of travel times, or a unit hydrograph (UH). For spatially varying levels of saturation deficit, we have different celerities and, hence, different UHs. Runoff is derived from the superposition of the different UHs. This study shows how celerities can be estimated if we assume that recession events represent the combined UHs for different levels of saturation deficit. A new soil moisture routine which estimates saturated and unsaturated volumes of subsurface water and with only one parameter to calibrate is included in the new model. The performance of the new model is compared with that of the Swedish HBV model and is found to perform equally well for eight Norwegian catchments although the number of parameters to be calibrated in the module concerning soil moisture and runoff dynamics is reduced from seven in the HBV model to one in the new model. It is also shown that the new model has a more realistic representation of the subsurface hydrology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
73.
赵希涛  魏乐军 《地球学报》2020,41(1):91-105
在上文阐明"五江一河"径流量的年际变化及各节点具体径流量要比"红旗河工程"构想少得多的基础上,本文依据前人资料和成果,进一步阐述这些河流的径流量,在年内分配的不均匀性与洪水特征,及其对跨流域调水量的制约作用。研究表明:"五江一河"在11月到翌年4月,径流量只占全年总径流量的12.09%~21.84%,月均只有2.01%~3.64%,为冬、春季枯水期。其径流量只比拟调水比例20%或21%的月均值1.67%或1.75%略多。如此之少的水量,只能维系流域内的生态、生产及生活用水,而不能跨流域调水。何况"红旗河"中、下游在冬季结冰期也难以进行调水。每年6月份到9月份的4个月,"五江一河"径流量占全年径流量的53.3%~88.3%,甚至8月份的月径流量可达全年总径流量的17.8%~29.6%,属于汛期。根据径流量的实际数据,一年当中可供调水时间段只有丰水与平水期的6个月或汛期的3~4个月,要比"红旗河工程"构想的全年调水的时间大大缩短。在可资跨流域调水的每年5—10月份的时间窗口中,如果按原构想的月均调水流量占年径流量的比例1.67%(按20%计)或1.75%(按21%计)进行调水,则"五江一河"的年调水总量仅为153.25×10^8m^3(按20%计)或161.50×10^8m^3(按21%计)。仅为原构想调水量600亿m^3的1/4,充其量不足27%。在丰水与平水期的6个月中实现年径流量20%或21%的年调水比例,就意味将月调水比例从占年径流量的1.67%或1.75%增加为3.33%或3.50%。这样,"五江一河"的年调水总量可达到306.50×10^8m^3或323.00×10^8 m^3。此调水方案,导致调水河道截面积或工程规模增加一倍,但调水量也只有原构想的大约一半或至多54%。如果将调水目标强行设定为600亿m^3,那么"五江一河"的调水比例将提高到占年径流量的27.1%(南水北调西线工程开展前),或除金沙江和雅砻江之外的其它调水河流的39.0%(南水北调西线工程完成后),"红旗河"的建设规模势必大大增加,这也意味着工程难度大大增加,意味着工程建设与运行成本大大增加,意味着洪水、地震与地质灾害的危险性大大增加。"五江一河"实际可调水量比"红旗河"构想严重减少,使人不禁会对"红旗河"工程立论的科学基础和科学依据提出质疑。  相似文献   
74.
鄂西岩溶槽谷区洼地的水位响应特征及产流阈值估算   总被引:1,自引:0,他引:1  
廖春来  罗明明  周宏 《中国岩溶》2020,39(6):802-809
以湖北省兴山县黄粮镇刘家坝和龙湾两处岩溶洼地作为研究对象,利用其降雨、水文和土壤水等监测数据,探讨灌入式补给条件下洼地汇流的水位响应特征和产流特点,并基于降雨量和洼地内明渠流量的关系,采用数学拟合方程,估算两处洼地的降雨产流阈值,进而分析了影响产流阈值的因素。结果表明:降雨强度增大,产流阈值减小;土壤前期含水率越大,越有利于坡面产流;落水洞和岩溶泉水位与降雨有较好的同步响应关系,水位变化曲线随雨强大小分别表现出“陡升陡降”和“缓升缓降”的特点;刘家坝和龙湾洼地的产流阈值分别为7.4 mm和10.6 mm。   相似文献   
75.
The origin of the Ryukyu Current(RC) and the formation of its subsurface velocity core were investigated using a 23-year(1993–2015) global Hybrid Coordinate Ocean Model(HYCOM) dataset. The volume transport of the RC comes from the Kuroshio eastward branch(KEB) east of Taiwan and part of the North Pacific Subtropical Gyre(pNPSG). From the surface to 2 000 m depth, the KEB(p-NPSG) transport contributes 41.5%(58.5%) to the mean total RC transport. The KEB originally forms the subsurface velocity core of the RC east of Taiwan due to blockage of the subsurface Kuroshio by the Ilan Ridge(sill depth: 700 m). Above 700 m, the Kuroshio can enter the East China Sea(ECS) over the Ilan Ridge, meanwhile, the blocked Kuroshio below 700 m turns to the right and flows along the Ryukyu Islands. With the RC flowing northeastward, the p-NPSG contribution strengthens the subsurface maximum structure of the RC owing to the blockage of the Ryukyu Ridge. In the surface layer, the pNPSG cannot form a stable northeastward current due to frequent disturbance by mesoscale eddies and water exchange through the gaps(with net volume transport into ECS) between the Ryukyu Islands.  相似文献   
76.
Wildfires change the infiltration properties of soil, reduce the amount of interception and result in increased runoff. A wildfire at Northeast Attica, Central Greece, in August 2009, destroyed approximately one third of a study area consisting of a mixture of shrublands, pastures and pines. The present study simultaneously models multiple semi‐arid, shrubland‐dominated Mediterranean catchments and assesses the hydrological response (mean annual and monthly runoff and runoff coefficients) during the first few years following wildfires. A physically based, hydrological model (MIKE SHE) was chosen. Calibration and validation results of mean monthly discharge presented very good agreement with the observed data for the pre‐wildfire and post‐wildfire period for two subcatchments (Nash–Sutcliffe Efficiency coefficient of 79.7%). The model was then used to assess the pre‐wildfire and post‐wildfire runoff responses for each of seven catchments in the study area. Mean annual surface runoff increased for the first year and after the second year following the wildfires increased by 112% and 166%, respectively. These values are within the range observed in similar cases of monitored sites. This modelling approach may provide a way of prioritizing catchment selection with respect to post‐fire remediation activities. Additionally, this modelling assessment methodology would be valuable to other semi‐arid areas because it provides an important means for comprehensively assessing post‐wildfire response over large regions and therefore attempts to address some of the scaled issues in the specific literature field of research. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
77.
The headwaters of mountainous, discontinuous permafrost regions in north‐eastern Mongolia are important water resources for the semi‐arid country, but little is known about hydrological processes there. Run‐off generation on south‐facing slopes, which are devoid of permafrost, has so far been neglected and is totally unknown for areas that have been affected by recent forest fires. To fill this knowledge gap, the present study applied artificial tracers on a steppe‐vegetated south‐facing and on two north‐facing slopes, burned and unburned. Combined sprinkling and dye tracer experiments were used to visualize processes of infiltration and water fluxes in the unsaturated zone. On the unburned north‐facing slope, rapid and widespread infiltration through a wet organic layer was observed down to the permafrost. On the burned profile, rapid infiltration occurred through a combusted organic and underlying mineral layer. Stained water seeped out at the bottom of both profiles suggesting a general tendency to subsurface stormflow (SSF). Ongoing SSF could directly be studied 24 h after a high‐intensity rainfall event on a 55‐m hillslope section in the burned forest. Measurements of water temperature proved the role of the permafrost layer as a base horizon for SSF. Repeated tracer injections allowed direct insights into SSF dynamics: A first injection suggested rather slow dispersive subsurface flow paths; whereas 18 h later, a second injection traced a more preferential flow system with 20 times quicker flow velocities. We speculate that these pronounced SSF dynamics are limited to burned slopes where a thermally insulating organic layer is absent. On three south‐facing soil profiles, the applied tracer remained in the uppermost 5 cm of a silt‐rich mineral soil horizon. No signs of preferential infiltration could be found, which suggested reduced biological activity under a harsh, dry and cold climate. Instead, direct observations, distributed tracers and charcoal samples provided evidence for the occurrence of overland flow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
78.
Experimental research in the Ethiopian highlands found that saturation excess induced runoff and erosion are common in the sub‐humid conditions. Because most erosion simulation models applied in the highlands are based on infiltration excess, we, as an alternative, developed the Parameter Efficient Distributed (PED) model, which can simulate water and sediment fluxes in landscapes with saturation excess runoff. The PED model has previously only been tested at the outlet of a watershed and not for distributed runoff and sediment concentration within the watershed. In this study, we compare the distributed storm runoff and sediment concentration of the PED model against collected data in the 95‐ha Debre Mawi watershed and three of its nested sub‐watersheds for the 2010 and 2011 rainy seasons. In the PED model framework, the hydrology of the watershed is divided between infiltrating and runoff zones, with erosion only taking place from two surface runoff zones. Daily storm runoff and sediment concentration values, ranging from 0.5 to over 30 mm and from 0.1 to 35 g l?1, respectively, were well simulated. The Nash Sutcliffe efficiency values for the daily storm runoff for outlet and sub‐watersheds ranged from 0.66 to 0.82, and the Nash–Sutcliffe efficiency for daily sediment concentrations were greater than 0.78. Furthermore, the model uses realistic fractional areas for surface and subsurface flow contributions, for example between saturated areas (15%), degraded areas (30%) and permeable areas (55%) at the main outlet, while close similarity was found for the remaining hydrology and erosion parameter values. One exception occurred for the distinctly greater transport limited parameter at the actively gullying lower part of the watershed. The results suggest that the model based on saturation excess provides a good representation of the observed spatially distributed runoff and sediment concentrations within a watershed by modelling the bottom lands (as opposed to the uplands) as the dominant contributor of the runoff and sediment load. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
79.
Rainfall–runoff models with different conceptual structures for the hydrological processes can be calibrated to effectively reproduce the hydrographs of the total runoff, while resulting in water budget components that are essentially different. This finding poses an open question on the reliability of rainfall–runoff models in reproducing hydrological components other than those used for calibration. In an effort to address this question, we use data from the Glafkos catchment in western Greece to calibrate and compare the ENNS model, a research-oriented lumped model developed for the river Enns in Austria developed for the river Enns in Austria, with the operational MIKE SHE model. Model performance is assessed in the light of the conceptual/structural differences of the modelled hydrological processes, using indices calculated independently for each year, rather than for the whole calibration period, since the former are stricter. We show that even small differences in the representation of hydrological processes may impact considerably on the water budget components that are not measured (i.e. not used for model calibration). From all water budget components, direct runoff exhibits the highest sensitivity to structural differences and related model parameters.
EDITOR M.C. Acreman

ASSOCIATE EDITOR S. Huang  相似文献   
80.
Agricultural sediment and pesticide runoff is a widespread ecological and human health concern. Numerical simulation models, such as Root Zone Water Quality Model (RZWQM) and Pesticide Root Zone Model (PRZM), have been increasingly used to quantify off‐site agricultural pollutant movement. However, RZWQM has been criticized for its inability to simulate sedimentation processes. The recent incorporation of the sedimentation module of Groundwater Loading Effects of Agricultural Management Systems has enabled RZWQM to simulate sediment and sediment‐associated pesticides. This study compares the sediment and pesticide transport simulation performance of the newly released RZWQM and PRZM using runoff data from 2 alfalfa fields in Davis, California. A composite metric (based on coefficient of determination, Nash–Sutcliffe efficiency, index of agreement, and percent bias) was developed and employed to ensure robust, comprehensive assessment of model performance. Results showed that surface water runoff was predicted reasonably well (absolute percent bias <31%) by RZWQM and PRZM after adjusting important hydrologic parameters. Even after calibration, underestimation bias (?89% ≤ PBIAS  ≤ ?36%) for sediment yield was observed in both models. This might be attributed to PRZM's incorrect distribution of input water and uncertainty in RZWQM's runoff erosivity coefficient. Moreover, the underestimation of sediment might be less if the origin of measured sediment was considered. Chlorpyrifos losses were simulated with reasonable accuracy especially for Field A (absolute PBIAS  ≤ 22%), whereas diuron losses were underestimated to a great extent (?98% ≤ PBIAS  ≤ ?65%) in both models. This could be attributed to the underprediction of herbicide concentration in the top soil due to the limitations of the instantaneous equilibrium sorption model as well as the high runoff potential of herbicide formulated as water‐dispersible granules. RZWQM and PRZM partitioned pesticides into the water and sediment phases similarly. According to model predictions, the majority of pesticide loads were carried via the water phase. On the basis of this study, both RZWQM and PRZM performed well in predicting runoff that carried highly adsorptive pesticides on an event basis, although the more physically based RZWQM is recommended when field‐measured soil hydraulic properties are available.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号